Computer calculations across time and length scales in photovoltaic solar cells
Author:
Affiliation:
1. Department of Applied Physics and Materials Science
2. California Institute of Technology
3. Pasadena CA 91125
4. USA
5. Department of Materials Science and Engineering
6. Massachusetts Institute of Technology
7. Cambridge MA 02139
Abstract
Photovoltaic (PV) solar cells convert solar energy to electricity through a cascade of microscopic processes spanning over 10 order of magnitudes of time and length. We review the computational methods available to study PV solar cells, focusing on recent advances and open problems.
Funder
Office of Science
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2016/EE/C6EE01010E
Reference190 articles.
1. The Future of Solar Energy: http://mitei.mit.edu/futureofsolar
2. Solar Energy Conversion Toward 1 Terawatt
3. Efficient planar heterojunction perovskite solar cells by vapour deposition
4. Polymer solar cells
5. Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comprehensive review on potential of diffusion length enhancement to upraise perovskite solar cell performance;Physica Scripta;2024-04-23
2. On the study of dye-sensitized solar cells with high light harvesting efficiency and correlation of its chemical reactivity parameters with overall performance;Theoretical Chemistry Accounts;2023-11-10
3. Establishment of Justified Parameter Optimization Sequence for obtaining Maximum Solar Cell Efficiency;Physica Scripta;2023-09-28
4. On the study of dye sensitized solar cells with high light harvesting efficiency and correlation of its chemical reactivity parameters with overall performance;2023-01-31
5. Cetyltrimethylammonium bromide – Oleic acid (CTAB-OA) bilayer coated iron oxide nanocrystals for enhanced chromium (VI) photoreduction via ligand-to-metal charge transfer mechanism;Chemical Engineering Journal;2022-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3