Structural evolution of BCN systems from graphene oxide towards electrocatalytically active atomic layers
Author:
Affiliation:
1. Tata Institute of Fundamental Research – Hyderabad
2. Hyderabad-500046
3. India
4. Department of Physical Science and Engineering
5. Nagoya Institute of Technology
6. Nagoya 466-8555
7. Japan
Abstract
Microstructure evolution of BCN systems from graphene oxide is studied using ReaxFF assisted molecular dynamics. The resultant theoretical structures are experimentally verified, and HER activity is studied for different microstructure variations.
Funder
Tata Institute of Fundamental Research
Publisher
Royal Society of Chemistry (RSC)
Subject
Materials Chemistry,General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2020/QM/D0QM00220H
Reference37 articles.
1. Towards new graphene materials: Doped graphene sheets and nanoribbons
2. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes
3. Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media
4. Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction
5. BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Effects of alignment and size of fillers on the thermal conductivity of magnetic-responsive exfoliated graphite@BN epoxy composites;Carbon Letters;2024-04-13
2. Quantifying defects in graphene oxide structures;Carbon Trends;2024-03
3. Electrostatic co-assembly of FePS3 nanosheets and surface functionalized BCN heterostructures for hydrogen evolution reaction;Dalton Transactions;2024
4. Morphological changes of carbon thin films with nitrogen doping synthesized by microwave-excited surface wave plasma CVD;Materials Chemistry and Physics;2023-10
5. Basal Plane Activation of MoS2 by the Substitutional Doping of Vanadium toward Electrocatalytic Hydrogen Generation;ACS Applied Energy Materials;2022-09-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3