Rapid decomposition and visualisation of protein–ligand binding free energies by residue and by water

Author:

Woods Christopher J.123,Malaisree Maturos123,Michel Julien45,Long Ben623,McIntosh-Smith Simon623,Mulholland Adrian J.123

Affiliation:

1. School of Chemistry

2. University of Bristol

3. Bristol, UK

4. EastCHEM School of Chemistry

5. Edinburgh, UK

6. Department of Computer Science

Abstract

Recent advances in computational hardware, software and algorithms enable simulations of protein–ligand complexes to achieve timescales during which complete ligand binding and unbinding pathways can be observed. While observation of such events can promote understanding of binding and unbinding pathways, it does not alone provide information about the molecular drivers for protein–ligand association, nor guidance on how a ligand could be optimised to better bind to the protein. We have developed the waterswap (C. J. Woods et al., J. Chem. Phys., 2011, 134, 054114) absolute binding free energy method that calculates binding affinities by exchanging the ligand with an equivalent volume of water. A significant advantage of this method is that the binding free energy is calculated using a single reaction coordinate from a single simulation. This has enabled the development of new visualisations of binding affinities based on free energy decompositions to per-residue and per-water molecule components. These provide a clear picture of which protein–ligand interactions are strong, and which active site water molecules are stabilised or destabilised upon binding. Optimisation of the algorithms underlying the decomposition enables near-real-time visualisation, allowing these calculations to be used either to provide interactive feedback to a ligand designer, or to provide run-time analysis of protein–ligand molecular dynamics simulations.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Reference47 articles.

1. A water-swap reaction coordinate for the calculation of absolute protein–ligand binding free energies

2. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born

3. Biomolecular Simulation: A Computational Microscope for Molecular Biology

4. D. E. Shaw , R. O.Dror , J. K.Salmon , J. P.Grossman , K. M.Mackenzie , J. A.Bank , C.Young , M. M.Deneroff , B.Batson , K. J.Bowers , E.Chow , M. P.Eastwood , D. J.Ierardi , J. L.Klepeis , J. S.Kuskin , R. H.Larson , K. L.Larsen , P.Maragakis , M. A.Moraes , S.Piana , Y.Shan and B.Towles , Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis , New York, NY, USA , 2009 , pp. 1–11

5. Electrostatic funneling of substrate in mitochondrial inner membrane carriers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3