Micro-kinetic simulations of the catalytic decomposition of hydrazine on the Cu(111) surface

Author:

Tafreshi Saeedeh S.1234,Roldan Alberto5674,de Leeuw Nora H.12345

Affiliation:

1. Department of Chemistry

2. University College London

3. London

4. UK

5. School of Chemistry

6. Cardiff University

7. Cardiff

Abstract

Hydrazine (N2H4) is produced at industrial scale from the partial oxidation of ammonia or urea. The hydrogen content (12.5 wt%) and price of hydrazine make it a good source of hydrogen fuel, which is also easily transportable in the hydrate form, thus enabling the production of H2in situ. N2H4 is currently used as a monopropellant thruster to control and adjust the orbits and altitudes of spacecrafts and satellites; with similar procedures applicable in new carbon-free technologies for power generators, e.g. proton-exchange membrane fuel cells. The N2H4 decomposition is usually catalysed by the expensive Ir/Al2O3 material, but a more affordable catalyst is needed to scale-up the process whilst retaining reaction control. Using a complementary range of computational tools, including newly developed micro-kinetic simulations, we have derived and analysed the N2H4 decomposition mechanism on the Cu(111) surface, where the energetic terms of all states have been corrected by entropic terms. The simulated temperature-programmed reactions have shown how the pre-adsorbed N2H4 coverage and heating rate affect the evolution of products, including NH3, N2 and H2. The batch reactor simulations have revealed that for the scenario of an ideal Cu terrace, a slow but constant production of H2 occurs, 5.4% at a temperature of 350 K, while the discharged NH3 can be recycled into N2H4. These results show that Cu(111) is not suitable for hydrogen production from hydrazine. However, real catalysts are multi-faceted and present defects, where previous work has shown a more favourable N2H4 decomposition mechanism, and, perhaps, the decomposition of NH3 improves the production of hydrogen. As such, further investigation is needed to develop a general picture.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Reference72 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3