Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements
Author:
Affiliation:
1. National Center for Computational Design and Discovery of Novel Materials (MARVEL)
2. Laboratory of Computational Science and Modelling
3. Institute of Materials
4. Ecole Polytechnique Federale de Lausanne
5. Lausanne
Abstract
By representing elements as points in a low-dimensional chemical space it is possible to improve the performance of a machine-learning model for a chemically-diverse dataset. The resulting coordinates are reminiscent of the main groups of the periodic table.
Funder
H2020 European Research Council
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2018/CP/C8CP05921G
Reference48 articles.
1. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
2. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
3. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
4. On representing chemical environments
5. Accurate interatomic force fields via machine learning with covariant kernels
Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks;npj Computational Materials;2024-09-13
2. Proper orthogonal descriptors for multi-element chemical systems;Journal of Computational Physics;2024-08
3. Wigner kernels: Body-ordered equivariant machine learning without a basis;The Journal of Chemical Physics;2024-07-26
4. Efficient and accurate simulation of vitrification in multicomponent metallic liquids with neural network potentials;Science China Materials;2024-07-25
5. High Entropy Alloy Composition Design for Mechanical Properties;High Entropy Alloys - Composition and Microstructure Design [Working Title];2024-07-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3