Rapid solidification for green-solvent-processed large-area organic solar modules with >16% efficiency

Author:

Zhang Ben1,Chen Weijie1,Chen Haiyang1,Zeng Guang1ORCID,Zhang Rui2ORCID,Li Hongxiang3,Wang Yunfei4ORCID,Gu Xiaodan4ORCID,Sun Weiwei1,Gu Hao1ORCID,Gao Feng2ORCID,Li Yaowen156ORCID,Li Yongfang157ORCID

Affiliation:

1. Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

2. Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden

3. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China

4. School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA

5. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China

6. State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

7. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

A rapid solidification strategy was developed for simultaneously avoiding the Marangoni effect and suppressing molecular aggregation. The resultant 15.64 cm2 large-area OSC module exhibited a record power conversion efficiency of 16.03%.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

National Natural Science Foundation of China

Collaborative Innovation Center of Suzhou Nano Science and Technology

U.S. Department of Energy

Sichuan Province Science and Technology Support Program

Publisher

Royal Society of Chemistry (RSC)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3