On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption

Author:

Hefti Max1234,Joss Lisa1234,Bjelobrk Zoran1234,Mazzotti Marco1234

Affiliation:

1. ETH Zurich

2. Institute of Process Engineering

3. CH-8092 Zurich

4. Switzerland

Abstract

We investigate the potential of a class of recently discovered metal–organic-framework materials for their use in temperature swing adsorption (TSA) processes for CO2 capture; the particularity of the considered materials is their reversible and temperature dependent step-shaped CO2 adsorption isotherm. Specifically, we present a comprehensive modeling study, where the performance of five different materials with step-shaped isotherms [McDonald et al., Nature, 2015, 519, 303] in a four step TSA cycle is assessed. The specific energy requirement of the TSA process operated with these materials is lower than for a commercial 13X zeolite, and a smaller temperature swing is required to reach similar levels of CO2 purity and recovery. The effect of a step in the adsorption isotherm is illustrated and discussed, and design criteria that lead to an optimal and robust operation of the considered TSA cycle are identified. The presented criteria could guide material scientists in designing novel materials whose step position is tailored to specific CO2 separation tasks.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3