Nanostructured WO3 photoanodes for efficient water splitting via anodisation in citric acid
Author:
Affiliation:
1. Department of Chemical Engineering
2. University of Bath
3. Bath
4. UK
5. Departament d'Enginyeria Química
6. Biològica i Ambiental
7. Universitat Autònoma de Barcelona
8. Bellaterra 08193
9. Spain
10. Department of Chemistry
Abstract
We report the production of nanostructured WO3 photoanodes for solar water splitting produced via anodisation using for the first time citric acid, a safer and more environmentally friendly alternative to fluoride-based electrolytes.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/RA/C7RA05342H
Reference31 articles.
1. Electrochemical Photolysis of Water at a Semiconductor Electrode
2. Understanding the photoelectrochemical properties of a reduced graphene oxide–WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting
3. Flame Synthesized Single Crystal Nanocolumn-Structured WO3 Thin Films for Photoelectrochemical Water Splitting
4. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production
5. Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optical screening of citrus leaf diseases using label-free spectroscopic tools: A review;Journal of Agriculture and Food Research;2024-12
2. Advancing nanoarchitectures of 2D WO3/MXene photoanode for enhanced photoelectrocatalytic oxidation of phenol and arsenic in synthetic wastewater;Environmental Research;2024-11
3. One-Dimensional TiO2 Nanocomposite-based Photoanode for Dye-Sensitized solar Cells: A review;Solar Energy;2024-09
4. Enhanced photoelectrochemical water oxidation by Fe(II) modified nanostructured WO3 photoanode;Optical Materials;2023-10
5. Nanoporous WO3 grown on a 3D tungsten mesh by electrochemical anodization for enhanced photoelectrocatalytic degradation of tetracycline in a continuous flow reactor;Journal of Electroanalytical Chemistry;2022-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3