Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes
Author:
Affiliation:
1. Department of Chemistry and Center for NanoScience (CeNS)
2. Ludwig-Maximilians-Universität München
3. D-81377 Munich, Germany
4. Department of Chemistry
5. University of Bath
6. Bath, UK
Abstract
The presence of a Sn dopant increases the rate constant for hole transfer by an order of magnitude during light driven water oxidation on hematite.
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2014/CP/C4CP03946G
Reference60 articles.
1. Limiting and realizable efficiencies of solar photolysis of water
2. p‐nphotoelectrolysis cells
3. Solar hydrogen production with nanostructured metal oxides
4. Efficient BiVO4Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping
5. Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3Photoanode
Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Engineering Surface Passivation and Hole Transport Layer on Hematite Photoanodes Enabling Robust Photoelectrocatalytic Water Oxidation;ACS Nano;2024-02-11
2. High-throughput parallel testing of ten photoelectrochemical cells for water splitting: case study on the effects of temperature in hematite photoanodes;Sustainable Energy & Fuels;2024
3. Unraveling the impact of tetravalent and pentavalent ions on the charge dynamics of hematite photoelectrodes for solar water splitting;Materials Today Chemistry;2023-12
4. Improvement of thermal insulating performance via entropy-stabilization in rare-earth zirconate structures;Journal of the European Ceramic Society;2023-12
5. TiO2 Nanopillar Arrays Coated with Oxygen-Doped ZnIn2S4 Nanosheets with the Elimination of S Vacancies for Photoelectrochemical Water Splitting;ACS Applied Nano Materials;2023-11-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3