Modulating multi-hole reaction pathways for photoelectrochemical water oxidation on gold nanocatalysts
Author:
Affiliation:
1. Department of Chemistry and Center for Catalysis
2. University of Florida
3. Gainesville
4. USA
5. Center for Functional Nanomaterials
6. Brookhaven National Laboratory
7. Upton
Abstract
Catechol stabilizes photo-generated holes on metal nanoparticles to create a new multi-hole reaction pathway for oxidizing water under visible light.
Funder
National Science Foundation
National Institutes of Health
U.S. Department of Energy
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2020/EE/C9EE04192C
Reference52 articles.
1. Rate Law Analysis of Water Oxidation on a Hematite Surface
2. Rate-Limiting O–O Bond Formation Pathways for Water Oxidation on Hematite Photoanode
3. Direct observation of sequential oxidations of a titania-bound molecular proxy catalyst generated through illumination of molecular sensitizers
4. Caught in the act
5. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes
Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Nearly Barrierless Four-hole Water Oxidation Catalysis on Semiconductor Photoanodes with Highly Accumulated Surface Holes;2024-08-23
2. A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction;Frontiers in Energy;2024-07-10
3. Plasmonic Hot Carrier‐Driven Photoelectrochemical Processes: Principle, Detection and Application;Advanced Materials Interfaces;2024-07-02
4. Synergistic photoelectric and thermal effect for efficient nitrate reduction on plasmonic Cu photocathodes;Chinese Journal of Catalysis;2024-07
5. Integrating photothermal and plasmonic catalysis induced by near-infrared light for efficient reduction of 4-nitrophenol;Journal of Colloid and Interface Science;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3