Mn-based oxides for aqueous rechargeable metal ion batteries
Author:
Affiliation:
1. School of Materials Science and Engineering
2. Beijing Institute of Technology
3. Beijing 100081
4. China
5. Yangtze Delta Region Academy of Beijing Institute of Technology
Abstract
Mn-based oxides as promising materials for aqueous energy storage are desirable in view of their low-cost, eco-friendliness and high theoretical capacity.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/TA/D1TA01951A
Reference241 articles.
1. Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries
2. High efficiency aqueous and hybrid lithium-air batteries enabled by Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ceramic anode-protecting membranes
3. Rapid Pseudocapacitive Sodium-Ion Response Induced by 2D Ultrathin Tin Monoxide Nanoarrays
4. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design
5. Thermodynamics of Phase Selection in MnO2 Framework Structures through Alkali Intercalation and Hydration
Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards Prussian blue analogues-based advanced aqueous batteries: From facing critical challenges to feasible solutions;Coordination Chemistry Reviews;2024-07
2. Considerations of advanced aqueous batteries recycling: A perspective;Journal of Energy Chemistry;2024-06
3. Metal-electronegativity-induced sulfur-vacancies and heterostructures of MnS1-x/ZnS-NC@C with dual-carbon decoration for high-performance sodium-ion storage;Composites Part B: Engineering;2024-04
4. 2D heterostructural Mn2O3 quantum dots embedded N-doped carbon nanosheets with strongly stable interface enabling high-performance sodium-ion hybrid capacitors;Journal of Colloid and Interface Science;2024-02
5. Advanced Aqueous Zinc-Ion Batteries Enabled by Three-Dimensional Amorphous Vanadium Pentoxide@Graphene Microspheres;Industrial & Engineering Chemistry Research;2024-01-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3