Selenium supplementation protects against oxidative stress-induced cardiomyocyte cell cycle arrest through activation of PI3K/AKT

Author:

Sun Wenjuan12,Zhu Jiawei12,Li Shuang12,Tang Chaohua12,Zhao Qingyu12,Zhang Junmin12ORCID

Affiliation:

1. State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

Abstract Oxidative stress significantly contributes to heart disease, and thus might be a promising target for ameliorating heart failure. Mounting evidence suggests that selenium has chemotherapeutic potential for treating heart disease due to its regulation of selenoproteins, which play antioxidant regulatory roles. Oxidative stress-induced cardiomyocyte cell cycle arrest contributes to the loss of cardiomyocytes during heart failure. The protective effects and mechanism of selenium against oxidative stress-induced cell cycle arrest in cardiomyocytes warrant further study. H9c2 rat cardiomyoblast cells were treated with hydrogen peroxide in the presence or absence of selenium supplementation. Na2SeO3 pretreatment alleviated H2O2-induced oxidative stress, increased thioredoxin reductase (TXNRD) activity and glutathione peroxidase (GPx) activity and counteracted the H2O2-induced cell cycle arrest at the S phase. These effects were accompanied by attenuation of the H2O2-induced strengthening of the G2/M-phase inhibitory system, including increased mRNA and protein levels of cyclin-dependent kinase 1 (CDK1) and decreased p21 mRNA levels. Notably, Na2SeO3 pretreatment activated the PI3K/AKT signaling pathway, and inhibition of PI3K counteracted the protective effects of selenium on H2O2-induced cell cycle arrest. We corroborated our findings in vivo by inducing oxidative stress in pig heart by feeding a selenium deficient diet, which decreased the TXNRD activity, inactivated PI3K/AKT signaling and strengthened the G2/M-phase inhibitory system. We concluded that the cardioprotective effects of selenium supplementation against oxidative stress-induced cell cycle arrest in cardiomyocytes might be mediated by the selenoprotein-associated (GPx and TXNRD) antioxidant capacity, thereby activating redox status-associated PI3K/AKT pathways, which promote cell cycle progression by targeting the G2/M phase inhibitory system. This study provides new insight into the underlying mechanisms of cardioprotection effects of selenium at the cellular level.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Agricultural Science and Technology Innovation Program

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3