Artificial neural network prediction of self-diffusion in pure compounds over multiple phase regimes
Author:
Affiliation:
1. Department of Organic Materials Science
2. Sandia National Laboratories
3. Albuquerque
4. USA
5. Advanced Materials Laboratory
6. Center of Micro-Engineered Materials
Abstract
Artificial neural networks (ANNs) were developed to accurately predict the self-diffusion constants for pure components in liquid, gas and super critical phases.
Funder
U.S. Department of Energy
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2021/CP/D0CP06693A
Reference47 articles.
1. S. Chapman , T. G.Cowling , D.Burnett and C.Cercignani , The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases , Cambridge University Press , 1990
2. Predicting the Diffusion Coefficients in Supercritical Fluids
3. Unified approach to the self-diffusion coefficients of dense fluids over wide ranges of temperature and pressure—hard-sphere, square-well, Lennard–Jones and real substances
4. Modified interacting-sphere model for self-diffusion and infinite-dilution mutual-diffusivity of n-alkanes
5. Prediction of Self-Diffusion Coefficients of Fluids Based on Friction and Free Volume Theories
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning model for the prediction of self-diffusion coefficients in liquids, compressed gases and supercritical fluids;Chemical Engineering Journal;2024-09
2. Modeling self‐diffusion coefficients of ionic liquids using ePC‐SAFT and FVT combined with Einstein relation;AIChE Journal;2024-05-07
3. A hybrid molecular dynamics/machine learning framework to calculate the viscosity and thermal conductivity of Ar, Kr, Xe, O, and Ν;Applied Research;2024-01-30
4. Impact of tracer particles on the electrolytic growth of hydrogen bubbles;Physics of Fluids;2024-01-01
5. Insights on nano-scale flow and interactive transportation of hazardous pollutants under supercritical fluid environment;Physics of Fluids;2024-01-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3