Catecholamine-functionalized graphene as a biomimetic redox shuttle for solar water oxidation

Author:

Son Eun Jin1234,Kim Jae Hong1234,Ko Jong Wan1234,Park Chan Beum1234

Affiliation:

1. Department of Materials Science and Engineering

2. Korea Advanced Institute of Science and Technology (KAIST)

3. Daejeon 305-701

4. Republic of Korea

Abstract

In natural photosynthesis, solar energy is converted to chemical energy through a cascaded, photoinduced charge transfer chain that consists of primary and secondary acceptor quinones (i.e., QA and QB). This leads to an exceptionally high near-unity quantum yield. Inspired by the unique multistep architecture of charge transfer in nature, we have synthesized a catecholamine-functionalized, reduced graphene oxide (RGO) film as a redox mediator that can mimic quinone acceptors in photosystem II. We used polynorepinephrine (PNE) as a redox-shuttling chemical. We also used it to coat graphene oxide (GO) and to reduce GO to RGO. The quinone ligands in PNE, which are characterized by a charge transfer involving two electrons and two protons, acted as electron acceptors that facilitated charge transfer in photocatalytic water oxidation. Furthermore, PNE-coated RGO film promoted fast charge separation in [Ru(bpy)3]2+ and increased the activity of cobalt phosphate on photocatalytic water oxidation more than two-fold. The results suggest that our bio-inspired strategy for the construction of a forward charge transfer pathway can provide more opportunities to realize efficient artificial photosynthesis.

Funder

National Research Foundation of Korea

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3