During this work, we studied the possibility of glucose oxidase (GOx) covalent immobilization on a modified inorganic support. A series of GOx-based biocatalysts was synthesized by crosslinking the enzyme to a surface of modified silica or alumina. Polyelectrolyte layers were used as modifiers for the silica and alumina surfaces. These layers promote tight binding of the GOx to the support. The biocatalyst’s activity and stability were studied using an oxidation reaction of d-glucose to d-gluconic acid. It was found that GOx immobilized on the modified SiO2 using glutardialdehyde as a crosslinking agent was the most active and stable catalytic system, showing an 85% yield of gluconic acid. A study of the synthesized biocatalyst structure using FTIR spectroscopy showed that the enzyme was covalently crosslinked to the surface of an inorganic support modified with chitosan and glutardialdehyde. In the case of SiO2, the quantity of the immobilized enzyme was higher than in the case of Al2O3.