Acquiring structural and mechanical information of a fibrous network through deep learning

Author:

Yang Shuo1,Zhao Chenxi1,Ren Jing1,Zheng Ke2,Shao Zhengzhong3ORCID,Ling Shengjie1ORCID

Affiliation:

1. School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China

2. Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China

3. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China

Abstract

A fibrous network-deep learning system (FN-DLS) was developed to extract fibrous network structure information from noisy atomic force microscopy images. FN-DLS can accurately assess the structural and mechanical characteristics of fibrous networks.

Funder

National Natural Science Foundation of China

ShanghaiTech University

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials

Publisher

Royal Society of Chemistry (RSC)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3