Machine learning-based structure–property predictions in silica aerogels
Author:
Affiliation:
1. Department of Continuum Mechanics
2. RWTH Aachen University
3. Aachen
4. Germany
5. Department of Aerogels and Aerogel Composites
6. Institute of Materials Research
7. German Aerospace Center
8. Cologne
Abstract
An artificial neural network is developed to predict the fractal properties of silica aerogels, modelled via diffusion-limited cluster–cluster aggregation, and then inverted for reconstructing an optimised network for a target fractal dimension.
Publisher
Royal Society of Chemistry (RSC)
Subject
Condensed Matter Physics,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/SM/D1SM00307K
Reference19 articles.
1. A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics
2. Physically informed artificial neural networks for atomistic modeling of materials
3. Unsupervised machine learning in atomistic simulations, between predictions and understanding
4. Modeling Macroscopic Material Behavior With Machine Learning Algorithms Trained by Micromechanical Simulations
5. An efficient Monte Carlo strategy for elasto-plastic structures based on recurrent neural networks
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning based tool for the efficient estimation of geometric features of aggregated aerosol particles;Journal of Aerosol Science;2024-08
2. ML-assisted optimization method for the prediction of 3-dimensional fractal structures from microscopic images;Journal of Aerosol Science;2024-03
3. Deep reinforcement learning for microstructural optimisation of silica aerogels;Scientific Reports;2024-01-17
4. Springback effect of ambient-pressure-dried silica aerogels: nanoscopic effects of silylation revealed by in situ synchrotron X-ray scattering;Nanoscale Advances;2024
5. Machine learning for structure-property mapping of Ising models: Scalability and limitations;Physical Review E;2023-12-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3