A novel empirical method for quickly estimating the charge-transfer state of fullerene-donor derivatives
Author:
Affiliation:
1. Beijing National Laboratory for Molecular Sciences
2. Key Laboratory of Molecular Nanostructure and Nanotechnology
3. Institute of Chemistry
4. Chinese Academy of Sciences
5. Beijing 100190
Abstract
A new convenient equivalent conjugated electron number technique is put forward to predict the charge-transfer state in fullerene-donor derivatives.
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Chinese Academy of Sciences
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2019/CP/C9CP05257G
Reference26 articles.
1. Photochromic Metal–Organic Frameworks: Reversible Control of Singlet Oxygen Generation
2. Hot and Cold Charge-Transfer Mechanisms in Organic Photovoltaics: Insights into the Excited States of Donor/Acceptor Interfaces
3. Ligand Control of Donor–Acceptor Excited-State Lifetimes
4. Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes
5. Spin-Allowed Transitions Control the Formation of Triplet Excited States in Orthogonal Donor-Acceptor Dyads
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rational Construction and Efficient Regulation of Stable and Long-Lived Charge-Separation State in Fullerene Materials;Accounts of Materials Research;2024-03-12
2. Interfullerene Electronic Interactions and Excited-State Dynamics in Fullerene Dumbbell Conjugates;Journal of the American Chemical Society;2023-06-13
3. Enhancing Built‐in Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C60 Fullerene into Zirconium‐Based Metal‐Organic Frameworks;Angewandte Chemie International Edition;2023-02-06
4. Enhancing Built‐in Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C60 Fullerene into Zirconium‐Based Metal‐Organic Frameworks;Angewandte Chemie;2023-02-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3