Multiscale modelling reveals higher charge transport efficiencies of DNA relative to RNA independent of mechanism
Author:
Affiliation:
1. Centre for Condensed Matter Theory
2. Department of Physics
3. Indian Institute of Science
4. Bangalore 560012
5. India
6. Department of Chemical Sciences
7. Tata Institute of Fundamental Research
8. Mumbai 400005
Abstract
In this study, we compare the charge transport properties of multiple (double stranded) dsRNA sequences with corresponding dsDNA sequences.
Funder
Department of Science and Technology, Ministry of Science and Technology, India
Ministry of Human Resource Development
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2020/NR/D0NR02382E
Reference79 articles.
1. Effective Distance for DNA-Mediated Charge Transport between Repair Proteins
2. DNA-mediated charge transport for DNA repair
3. The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport
4. Electrochemistry of the [4Fe4S] Cluster in Base Excision Repair Proteins: Tuning the Redox Potential with DNA
5. Biological contexts for DNA charge transport chemistry
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stretching effects on non-adiabatic electron dynamic behavior in poly(dG)-poly(dC) DNA upon the proton irradiation;Journal of Physics: Condensed Matter;2023-04-20
2. A conceptual framework for designing and analyzing complex molecular circuits;Journal of Materials Chemistry C;2023
3. Molecular Rectifiers with a Very High Rectification Ratio Enabled by Oxidative Damage in Double-Stranded DNA;The Journal of Physical Chemistry B;2022-06-22
4. Dual Time-Scale Proton Transfer and High-Energy, Long-Lived Excitons Unveiled by Broadband Ultrafast Time-Resolved Fluorescence in Adenine–Uracil RNA Duplexes;The Journal of Physical Chemistry Letters;2022-01-03
5. Quantum Circuit Rules for Molecular Electronic Systems: Where Are We Headed Based on the Current Understanding of Quantum Interference, Thermoelectric, and Molecular Spintronics Phenomena?;Nano Letters;2021-10-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3