Pt–dipyridyl tetrazine metal–organic network on the Au(100) surface: insights from first principles calculations

Author:

Le Duy1234,Rahman Talat S.12345ORCID

Affiliation:

1. Department of Physics

2. University of Central Florida

3. Orlando

4. USA

5. Donostia International Physics Center (DIPC)

Abstract

Metal–organic coordination networks with active metal centers are a promising class of materials for next-generation catalysts. Motivated by experimental observations of the formation of a Pt–Dipyridyl Tetrazine (DT) metal–organic network on the Au(100) surface [D. Skomski et al., J. Am. Chem. Soc., 2014, 136, 9862], we carried out density functional theory based calculations on the same system. In this discussion, we demonstrate that the strong interaction between DT ligands and Pt metal centers makes the network stable and that the Pt centers become positively charged by donating their electrons to the DT ligands, resulting in +2 oxidation states for the Pt centers. We further show that the Au substrate withdraws electrons from and hybridizes with the dz2 orbital of the Pt centers, altering their electronic structure and related properties. Furthermore, we find that the Pt centers can absorb SO2via donor–acceptor interactions, leading to the formation of σ-bonds in which Pt dz2 orbitals act as electron donors, and that the strength of the resultant σ-bond depends on the registry of the Pt centers with the Au(100) surface. Finally, we identify factors, such as the specificity of the ligands and the substrate, and the fullness of the outer shell of the metal centers, that may affect the chemical properties of the metal centers. We suggest modifications (and replacement) of these factors as one of the ways to tune and design metal–organic coordination networks for next-generation catalysts.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3