Elucidating “screw dislocation”-driven film formation of sodium thiosulphate with complex hierarchical molecular assembly

Author:

Dwivedi Deepak123,Lepkova Katerina123ORCID,Becker Thomas453ORCID,Rowles Matthew R.67893ORCID

Affiliation:

1. Curtin Corrosion Engineering Industry Centre

2. Department of Chemical Engineering

3. Australia

4. Nanochemistry Research Institute

5. Department of Chemistry

6. Department of Physics and Astronomy

7. Fuels and Energy Technology Institute Faculty of Science and Engineering

8. Curtin University

9. Perth

Abstract

Sodium thiosulphate (Na2S2O3) films were synthesized on carbon steel substrates through solution deposition, and a film formation growth mechanism is delineated in detail herein. Dislocation-driven film formation took place at the lower concentration of Na2S2O3 (0.1 M) studied, where screw dislocation loops were identified. Interestingly, we observed the co-existence of screw dislocation spiral loops and hierarchically-ordered molecular assembly in the film, and showed the importance of hierarchical morphology in the origin of screw dislocation. The screw dislocation loops were, however, distorted at the higher studied concentration of Na2S2O3 (0.5 M), and no hierarchical structures were formed. The mechanisms of film formation are discussed in detail and provide new insights into our understanding regarding morphology of the hierarchical molecular assembly, screw dislocation loop formation, and the role of chemical elements for their development. The main crystalline and amorphous phases in the surface films were identified as pyrite/mackinawite and magnetite. As sodium thiosulphate is widely used for energy, corrosion inhibition, nanoparticle synthesis and catalysis applications, the knowledge generated in this study is applicable to the fields of corrosion, materials science, materials chemistry and metallurgy.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3