Boundary layer friction of solvate ionic liquids as a function of potential

Author:

Li Hua1234ORCID,Rutland Mark W.56789,Watanabe Masayoshi101112,Atkin Rob1234ORCID

Affiliation:

1. Priority Research Centre for Advanced Fluids and Interfaces

2. The University of Newcastle

3. Callaghan

4. Australia

5. School of Chemical Science and Engineering

6. KTH Royal Institute of Technology

7. SE100 44 Sweden

8. Chemistry, Materials and Surfaces

9. SP Technical Research Institute of Sweden

10. Department of Chemistry and Biotechnology

11. Yokohama National University

12. Japan

Abstract

Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)–highly ordered pyrolytic graphite (HOPG) and SIL–Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li+ cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI anion rich boundary layer at positive potentials is more lubricating than the Li+ cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li+ cations for both surfaces at negative potentials. However, at Au(111), the TFSI rich boundary layer is less lubricating than the Li+ rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO3 rich boundary layer.

Funder

Vetenskapsrådet

Knut och Alice Wallenbergs Stiftelse

Australian Research Council

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3