Investigation of the impact of magnesium versus titanium implants on protein composition in osteoblast by label free quantification

Author:

Omidi M1,Ahmad Agha N2,Müller A2,Feyerabend F2ORCID,Helmholz H2ORCID,Willumeit-Römer R2,Schlüter H1,Luthringer-Feyerabend B J C2ORCID

Affiliation:

1. Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany

2. Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany. Fax: +49 4152 87 2595; Tel: +49 4152 87 1292

Abstract

Abstract Metallic implant biomaterials predominate in orthopaedic surgery. Compared to titanium-based permanent implants, magnesium-based ones offer new possibilities as they possess mechanical properties closer to the ones of bones and they are biodegradable. Furthermore, magnesium is more and more considered to be “bioactive” i.e., able to elicit a specific tissue response or to strengthen the intimate contact between the implant and the osseous tissue. Indeed, several studies demonstrated the overall beneficial effect of magnesium-based materials on bone tissue (in vivo and in vitro). Here, the direct effects of titanium and magnesium on osteoblasts were measured on proteomes levels in order to highlight metal-specific and relevant proteins. Out of 2100 identified proteins, only 10 and 81 differentially regulated proteins, compare to the control, were isolated for titanium and magnesium samples, respectively. Selected ones according to their relationship to bone tissue were further discussed. Most of them were involved in extracellular matrix maturation and remodelling (two having a negative effect on mineralisation). A fine-tuned balanced between osteoblast maturation, differentiation and viability was observed.

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3