Big-data and machine learning to revamp computational toxicology and its use in risk assessment

Author:

Luechtefeld Thomas1,Rowlands Craig2,Hartung Thomas1ORCID

Affiliation:

1. Center for Alternatives to Animal Testing at Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA

2. Underwriters Laboratories (UL), UL Product Supply Chain Intelligence, 333 Pfingsten Road, Northbrook, IL 60062, USA

Abstract

Abstract The creation of large toxicological databases and advances in machine-learning techniques have empowered computational approaches in toxicology. Work with these large databases based on regulatory data has allowed reproducibility assessment of animal models, which highlight weaknesses in traditional in vivo methods. This should lower the bars for the introduction of new approaches and represents a benchmark that is achievable for any alternative method validated against these methods. Quantitative Structure Activity Relationships (QSAR) models for skin sensitization, eye irritation, and other human health hazards based on these big databases, however, also have made apparent some of the challenges facing computational modeling, including validation challenges, model interpretation issues, and model selection issues. A first implementation of machine learning-based predictions termed REACHacross achieved unprecedented sensitivities of >80% with specificities >70% in predicting the six most common acute and topical hazards covering about two thirds of the chemical universe. While this is awaiting formal validation, it demonstrates the new quality introduced by big data and modern data-mining technologies. The rapid increase in the diversity and number of computational models, as well as the data they are based on, create challenges and opportunities for the use of computational methods.

Funder

Directorate-General for Research and Innovation

National Institute of Environmental Health Sciences

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3