Strong-field ionization of polyatomic molecules: ultrafast H atom migration and bond formation in the photodissociation of CH3OH
Author:
Affiliation:
1. Physical Research Laboratory
2. Ahmedabad
3. India
4. Indian Institute of Technology
5. Gandhinagar
6. Department of Physics
7. Institute of Infrastructure Technology Research and Management
Abstract
Quantum control of intramolecular H migration and Hn+ (n = 1–3) ions formation from ionized CH3OH using laser parameters has been experimentally demonstrated, while the mechanism of H migration and dissociation of CH3OH+ have been explained successfully.
Funder
Department of Science and Technology, Ministry of Science and Technology, India
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/FD/D0FD00129E
Reference66 articles.
1. Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes
2. Sequential and direct ionic excitation in the strong-field ionization of 1-butene molecules
3. Single and double ionization of diatomic molecules in strong laser fields
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Imidazolium-based ionic liquid supported layered silicate HUS-7 as an active catalyst for ring opening of oxiranes;Journal of Materials Science;2023-06-16
2. Effect of isopropyl side chain branching and different anions on electronic structure, vibrational spectra, and hydrogen bonding of isopropyl-imidazolium-based ionic liquids: Experimental and theoretical investigations;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2023-04
3. On the two-body dissociation of dications of water isotopologues;International Journal of Mass Spectrometry;2023-01
4. Iron oxide nanoparticles loaded smart hybrid hydrogel for anti-inflammatory drug delivery: Preparation and characterizations;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2022-10
5. Ordered silica matrices supported ionic liquids as highly efficient catalysts for fine chemical synthesis;Journal of Porous Materials;2022-08-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3