The reduction of cis-platinum(iv) complexes by ascorbate and in whole human blood models using 1H NMR and XANES spectroscopy

Author:

Chen Catherine K J1,Kappen Peter2,Hambley Trevor W1ORCID

Affiliation:

1. School of Chemistry, The University of Sydney, NSW 2006, Australia

2. Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton 3168, Victoria, Australia

Abstract

Abstract The efficacy of platinum(iv) prodrugs depends on their relative resistance to reduction in the extra- and intra-cellular environments. In the study reported here we investigated the influence of the nature of the axial and equatorial ligands on the pathway of reduction of the platinum(iv) complexes by the endogenous reductant, ascorbate, and their relative resistance to reduction in human blood serum and in a whole human blood model. The pathway of reduction of platinum(iv) complexes in the presence of excess ascorbate was found to be dependent on the nature of their axial and equatorial ligands in that complexes with chloride in the equatorial sites lost either both axial ligands or combinations of axial and equatorial ligands while those with oxalate occupying the equatorial sites lost both axial ligands only. Using XANES spectroscopy, complexes with axial hydroxide ligands were found to be highly resistant to reduction in blood serum and were only slowly and incompletely reduced in whole blood. The dihydroxide complex with an oxalate ligand occupying the equatorial leaving group sites was more resistant to reduction, both in serum and in whole blood, than the complex with chloride ligands in these sites. cis, trans-[PtCl2(OAc)2(en)] and trans-[Pt(OAc)2(ox)(en)] were observed to be reduced rapidly and almost completely in whole blood but the latter was substantially resistant to reduction in human blood serum, and consequently demonstrates many of the features of an optimal platinum(iv) anticancer agent.

Funder

Australian Synchrotron

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3