Hantzsch ester as hole relay significantly enhanced photocatalytic hydrogen production
Author:
Affiliation:
1. Division of Nanomaterials and Chemistry
2. Hefei National Laboratory for Physical Sciences at Microscale
3. University of Science and Technology of China
4. Hefei 230026
5. China
Abstract
Hantzsch ester (DHPE) retards the recombination of electron–hole pairs through extracting holes from g-C3N4, thus dramatically improving visible photocatalytic hydrogen production.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
Catalysis
Link
http://pubs.rsc.org/en/content/articlepdf/2018/CY/C8CY01922C
Reference43 articles.
1. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?
2. Electrochemical Photolysis of Water at a Semiconductor Electrode
3. Polymeric Photocatalysts Based on Graphitic Carbon Nitride
4. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production
5. Enhanced Fenton, photo-Fenton and peroxidase-like activity and stability over Fe 3 O 4 /g-C 3 N 4 nanocomposites
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 0D/3D direct Z-scheme heterojunctions hybridizing by MoS2 quantum dots and honeycomb conjugated triazine polymers (CTPs) for enhanced photocatalytic performance;Journal of Environmental Sciences;2023-02
2. S-scheme 3D/2D NiCo2O4@g-C3N4 hybridized system for boosting hydrogen production from water splitting;Renewable Energy;2023-02
3. Structure-Dependent Surface Molecule-Modified Semiconductor Photocatalysts: Recent Progress and Future Challenges;ACS Sustainable Chemistry & Engineering;2022-12-08
4. 1 D CeO2/g-C3N4 type II heterojunction for visible-light-driven photocatalytic hydrogen evolution;Inorganic Chemistry Communications;2022-10
5. Facile Construction of 3d/2d Nico2o4@G-C3n4 Hybridized System for Boosting Hydrogen Production from Water Splitting;SSRN Electronic Journal;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3