TiO2/ZnO nanocomposite, ZnO/ZnO bi-level nanostructure and ZnO nanorod arrays: microstructure and time-affected wettability change in ambient conditions
Author:
Affiliation:
1. Department of Chemical and Materials Engineering
2. The University of Auckland
3. Auckland 1142, New Zealand
4. School of Materials Science and Engineering
5. Beijing Institute of Technology
6. Beijing 100081, China
Abstract
Wettability is an important property of surfaces and interfaces. Understanding the wetting behavior of semiconductors and its relationship with their microstructures has aroused much interest because of the great advantages this gives to various functional applications.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2014/RA/C4RA04904G
Reference34 articles.
1. Tunable surface wettability of ZnO nanorods prepared by two-step method
2. Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects
3. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER
4. Surface Roughness and Contact Angle.
5. Design and Creation of Superwetting/Antiwetting Surfaces
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rh single atoms/clusters confined in metal sulfide/oxide nanotubes as advanced multifunctional catalysts for green and energy-saving hydrogen productions;Applied Catalysis B: Environmental;2022-09
2. Immobilized ZnO based nanostructures and their environmental applications;Progress in Natural Science: Materials International;2021-12
3. Facile fabrication of superhydrophilic and underwater superoleophobic surfaces on cotton fabrics for effective oil/water separation with excellent anti-contamination ability;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2021-11
4. Preparation of Protein Molecular-Imprinted Polysiloxane Membrane Using Calcium Alginate Film as Matrix and Its Application for Cell Culture;Polymers;2018-02-10
5. Biomolecular recognition on nanowire surfaces modified by the self-assembled monolayer;Lab on a Chip;2018
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3