Improved electrochemical stability at the surface of La0.8Sr0.2CoO3 achieved by surface chemical modification

Author:

Tsvetkov Nikolai12345,Lu Qiyang12346,Yildiz Bilge12345

Affiliation:

1. Laboratory for Electrochemical Interfaces

2. Massachusetts Institute of Technology

3. Cambridge

4. USA

5. Department of Nuclear Science and Engineering

6. Department of Material Science and Engineering

Abstract

The degradation of the surface chemistry on perovskite (ABO3) oxides is a critical issue for their performance in energy conversion systems such as solid oxide fuel/electrolysis cells and in splitting of H2O and CO2 to produce fuels. This degradation is typically in the form of segregation and phase separation of dopant cations from the A-site, driven by elastic and electrostatic energy minimization and kinetic demixing. In this study, deposition of Ti at the surface was found to hinder the dopant segregation and the corresponding electrochemical degradation on a promising SOFC cathode material, La0.8Sr0.2CoO3 (LSC). The surface of the LSC films was modified by Ti (denoted as LSC-T) deposited from a TiCl4 solution. The LSC and LSC-T thin films were investigated by electrochemical impedance spectroscopy, nano-probe Auger electron spectroscopy, and X-ray photoelectron spectroscopy (XPS), upon annealing at 420–530 °C in air up to about 90 hours. The oxygen exchange coefficient, kq, on LSC-T cathodes was found to be up to 8 times higher than that on LSC cathodes at 530 °C and retained its stability. Sr-rich insulating particles formed at the surface of the annealed LSC and LSC-T films, but with significantly less coverage of such particles on the LSC-T. From this result, it appears that modification of the LSC surface with Ti reduces the segregation of the blocking Sr-rich particles at the surface, and a larger area on LSC surface (with a higher Sr doping level in the lattice) is available for the oxygen reduction reaction. The stabilization of the LSC surface through Ti-deposition can open a new route for designing surface modifications on perovskite oxide electrodes for high temperature electro- and thermo-chemical applications.

Funder

National Science Foundation

Advanced Research Projects Agency-Energy

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3