Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor

Author:

Shin Tae Ho12345,Myung Jae-Ha1234,Verbraeken Maarten1234,Kim Guntae678,Irvine John T. S.1234

Affiliation:

1. School of Chemistry

2. University of St Andrews

3. St Andrews, Fife

4. UK

5. Electronic Materials Convergence Division

6. Dept. of Chemical and Energy Engineering

7. Ulsan National Institute of Science and Technology (UNIST)

8. Korea

Abstract

A-site ordered PrBaMn2O5+δ was investigated as a potential cathode for CO2 electrolysis using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte. The A-site ordered layered double perovskite, PrBaMn2O5+δ, was found to enhance electrocatalytic activity for CO2 reduction on the cathode side since it supports mixed valent transition metal cations such as Mn, which could provide high electrical conductivity and maintain a large oxygen vacancy content, contributing to fast oxygen ion diffusion. It was found that during the oxidation of the reduced PrBaMn2O5+δ (O5 phase) to PrBaMn2O6−δ (O6 phase), a reversible oxygen switchover in the lattice takes place. In addition, here the successful CO2 electrolysis was measured in LSGM electrolyte with this novel oxide electrode. It was found that this PrBaMn2O5+δ, layered perovskite cathode exhibits a performance with a current density of 0.85 A cm−2 at 1.5 V and 850 °C and the electrochemical properties were also evaluated by impedance spectroscopy.

Funder

Engineering and Physical Sciences Research Council

Royal Society

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3