Use of machine learning to analyze chemistry card sort tasks

Author:

Sizemore Logan1ORCID,Hutchinson Brian12ORCID,Borda Emily3

Affiliation:

1. Department of Computer Science, Western Washington University, Bellingham, WA, USA

2. Computing and Analytics Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99354-1793, USA

3. Departments of Chemistry and Science, Math, and Technology Education (SMATE), Western Washington University, Bellingham, WA, USA

Abstract

Education researchers are deeply interested in understanding the way students organize their knowledge. Card sort tasks, which require students to group concepts, are one mechanism to infer a student's organizational strategy. However, the limited resolution of card sort tasks means they necessarily miss some of the nuance in a student's strategy. In this work, we propose new machine learning strategies that leverage a potentially richer source of student thinking: free-form written language justifications associated with student sorts. Using data from a university chemistry card sort task, we use vectorized representations of language and unsupervised learning techniques to generate qualitatively interpretable clusters, which can provide unique insight in how students organize their knowledge. We compared these to machine learning analysis of the students’ sorts themselves. Machine learning-generated clusters revealed different organizational strategies than those built into the task; for example, sorts by difficulty or even discipline. There were also many more categories generated by machine learning for what we would identify as more novice-like sorts and justifications than originally built into the task, suggesting students’ organizational strategies converge when they become more expert-like. Finally, we learned that categories generated by machine learning for students’ justifications did not always match the categories for their sorts, and these cases highlight the need for future research on students’ organizational strategies, both manually and aided by machine learning. In sum, the use of machine learning to analyze results from a card sort task has helped us gain a more nuanced understanding of students’ expertise, and demonstrates a promising tool to add to existing analytic methods for card sorts.

Funder

Washington Space Grant Consortium

Publisher

Royal Society of Chemistry (RSC)

Subject

Education,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3