Room-temperature synthesis with inert bubble templates to produce “clean” PdCoP alloy nanoparticle networks for enhanced hydrazine electro-oxidation
Author:
Affiliation:
1. College of Chemistry and Chemical Engineering
2. Northwest Normal University
3. Lanzhou 730070
4. China
5. South African Institute for Advanced Materials Chemistry
6. University of the Western Cape
7. Cape Town 7535
8. South Africa
Abstract
PdCoP alloy nanoparticle networks prepared using inert bubbles as template exhibited high activity for hydrazine oxidation.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/RA/C4RA14423F
Reference29 articles.
1. A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles
2. Hydrazine Oxidation at Porous and Preferentially Oriented {100} Pt Thin Films
3. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions
4. Facet-dependent electrocatalytic activities of Pd nanocrystals toward the electro-oxidation of hydrazine
5. Properties of Pd nanoparticles-embedded polyaniline multilayer film and its electrocatalytic activity for hydrazine oxidation
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adjusting grain boundary within NiCo2O4 rod arrays by phosphating reaction for efficient hydrogen production;Nanotechnology;2022-03-25
2. Engineering the densities of grain boundaries within particle-assembled NiCo2O4 rods by sulfurization for effective water electrolysis;Journal of Electroanalytical Chemistry;2022-03
3. Rational Synthesis and Regulation of Hollow Structural Materials for Electrocatalytic Nitrogen Reduction Reaction;Advanced Science;2021-12-10
4. Synthesis of ultrafine low loading Pd–Cu alloy catalysts supported on graphene with excellent electrocatalytic performance for formic acid oxidation;International Journal of Hydrogen Energy;2020-04
5. Phosphate stabilized PdCoP@Nifoam catalyst for self-pressurized H2 production from the electrochemical reforming of ethanol at 150 °C;Journal of Catalysis;2020-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3