Investigation of the calcium-induced activation of the bacteriophage T5 peptidoglycan hydrolase promoting host cell lysis

Author:

Kovalenko Angelina O1ORCID,Chernyshov Sergei V1,Kutyshenko Victor P2,Molochkov Nikolai V2,Prokhorov Dmitry A2,Odinokova Irina V2ORCID,Mikoulinskaia Galina V1ORCID

Affiliation:

1. Branch of Shemyakin & Ovchinnikov’s Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, Moscow region 142290, Russia. Fax: +7-4967-330527; Tel: +7-4967-330527

2. Institute of Theoretical and Experimental Biophysics RAS, Institutskaya ul., 3, Pushchino, Moscow region 142290, Russia

Abstract

Abstract Peptidoglycan hydrolase of bacteriophage T5 (EndoT5) is a Ca2+-dependent l-alanyl-d-glutamate peptidase, although the mode of Ca2+ binding and its physiological significance remain obscure. Site-directed mutagenesis was used to elucidate the role of the polar amino acids of the mobile loop of EndoT5 (111–130) in Ca2+ binding. The mutant proteins were purified to electrophoretic homogeneity, the overall structures were characterized by circular dichroism, and the calcium dissociation constants were determined via NMR spectroscopy. The data suggest that polar amino acids D113, N115, and S117 of EndoT5 are involved in the coordination of calcium ions by forming the core of the EF-like Ca2+-binding loop while the charged residues D122 and E123 of EndoT5 contribute to maintaining the loop net charge density. The results suggest that Ca2+ binding to the EndoT5 molecule could be essential for the stabilization of the long mobile loop in the catalytically active “open” conformation. The possible mechanism of Ca2+ regulation of EndoT5 activity during bacteriophage T5’s life cycle through the Ca2+ concentration difference between the cytoplasm and the periplasm of the host bacteria cell has been discussed. The study reveals valuable insight into the role of calcium in the regulation of phage-induced bacterial lysis.

Funder

Russian Foundation for Basic Research

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3