Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction
Author:
Affiliation:
1. Department of Chemistry
2. State University of New York at Stony Brook
3. Stony Brook
4. USA
5. Condensed Matter Physics and Materials Sciences Department
Abstract
We have synthesized novel ultrathin ternary PtRuFe nanowires (NW) and probed both their methanol oxidation reaction (MOR) and formic acid oxidation reaction (FAOR) activities as a function of chemical composition.
Funder
U.S. Department of Energy
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/EE/C4EE02162B
Reference53 articles.
1. Development of enhanced materials for direct-methanol fuel cell by combinatorial method and nanoscience
2. Methanol oxidation and direct methanol fuel cells: a selective review
3. Effect of transition metals (Ni, Sn and Mo) in Pt5Ru4M alloy ternary electrocatalyst on methanol electro-oxidation
4. Nanoporous PtCo Surface Alloy Architecture with Enhanced Properties for Methanol Electrooxidation
5. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles
Cited by 273 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PtPd @CeO2 nanoparticles highly dispersed on carbon nanotubes as efficient electrocatalysts for methanol oxidation;Journal of Electroanalytical Chemistry;2024-08
2. CO-tolerant electrocatalysts for hydrogen fuel cells: Fundamental study-based design and real-life applications;Chemical Engineering Journal;2024-08
3. Inducing ionic interaction in Pt3CuN nanocatalysts for superior stability and CO-resilient towards methanol oxidation;Molecular Catalysis;2024-07
4. Heterostructured Pt-PbS Nanobelt Achieves Remarkable Direct Formic Acid Oxidation Catalysis;Nano Letters;2024-06-21
5. A Biphasic Strategy to Synergistically Accelerate Activation and CO Spillover in Formic Acid Oxidation Catalysis;Nano Letters;2024-06-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3