Graphene nanogaps for the directed assembly of single-nanoparticle devices
Author:
Affiliation:
1. Department of Materials
2. University of Oxford
3. UK
4. Institute for Quantum Computing
5. University of Waterloo
6. Canada
7. School of Physics and Astronomy
8. Queen Mary University of London
Abstract
Manipulating matter at the nanoscale has long been a central challenge in the field of nanoscience. Here, we employ graphene nanogaps as a platform for the dielectrophoretic capture of single nanoparticles to form hybrid low-dimensional devices.
Funder
Clarendon Fund
Engineering and Physical Sciences Research Council
UK Research and Innovation
Canada First Research Excellence Fund
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2021/NR/D1NR01450A
Reference88 articles.
1. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors
2. Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties
3. Colloidal quantum dot molecules manifesting quantum coupling at room temperature
4. Rational construction of a scalable heterostructured nanorod megalibrary
5. Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. NDR and spin-polarized transport properties of magnetic Fe sandwiched C60-GNR single molecule devices: theoretical insight;New Journal of Chemistry;2024
2. Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale;Nature Protocols;2023-04-12
3. Direct Magnetic Evidence, Functionalization, and Low-Temperature Magneto-Electron Transport in Liquid-Phase Exfoliated FePS3;ACS Nano;2023-01-18
4. Amplifying Quantum Tunneling Current Sensitivity through Labeling Nucleotides Using Graphene Nanogap Electrodes;ACS Applied Nano Materials;2022-07-13
5. Investigations of Optical Coulomb Blockade Oscillations in Plasmonic Nanoparticle Dimers;International Journal of Photoenergy;2022-01-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3