Assessment of machine learning approaches for predicting the crystallization propensity of active pharmaceutical ingredients
Author:
Affiliation:
1. Department of Materials Science and Engineering and Institute of Materials Science
2. University of Connecticut
3. Storrs
4. USA
5. Pfizer Worldwide Research & Development
6. Pharmaceutical Sciences
7. Pfizer Inc.
8. Groton
Abstract
This work critically evaluates a number of machine learning approaches for predicting the crystallization propensity of active pharmaceutical ingredients using a real-world dataset.
Publisher
Royal Society of Chemistry (RSC)
Subject
Condensed Matter Physics,General Materials Science,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/CE/C8CE01589A
Reference28 articles.
1. Predicting the Crystallization Propensity of Drug-Like Molecules
2. Will it crystallise? Predicting crystallinity of molecular materials
3. A publicly available crystallisation data set and its application in machine learning
4. Machine-learning-assisted materials discovery using failed experiments
5. Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Going beyond the Ordered Bulk: A Perspective on the Use of the Cambridge Structural Database for Predictive Materials Design;Crystal Growth & Design;2024-08-19
2. Artificial Intelligence Assisted Pharmaceutical Crystallization;Crystal Growth & Design;2024-05-03
3. Designing workflows for materials characterization;Applied Physics Reviews;2024-03-01
4. Towards physics-informed explainable machine learning and causal models for materials research;Computational Materials Science;2024-01
5. Predictive Design of Hybrid Improper Ferroelectric Double Perovskite Oxides;Chemistry of Materials;2023-12-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3