Energy storage performance of Vn+1Cn monolayer as electrode material studied by first-principles calculations
Author:
Affiliation:
1. Key Laboratory for Photonic and Electronic Bandgap Materials
2. Ministry of Education
3. School of Physics and Electronic Engineering
4. Harbin Normal University
5. Harbin 150025
Abstract
Vn+1Cn monolayer is a promising candidate for electrode materials, due to high conductivity, large cation storage capabilities, and high-rate performance during the charging/discharging process.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2016/RA/C6RA04034A
Reference37 articles.
1. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage
2. Quantitative investigation on the effect of hydrogenation on the performance of MnO2/H-TiO2 composite electrodes for supercapacitors
3. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes
4. Facile Synthesis of 3D MnO2-Graphene and Carbon Nanotube-Graphene Composite Networks for High-Performance, Flexible, All-Solid-State Asymmetric Supercapacitors
5. MoS2 and WS2 Analogues of Graphene
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Transition Metal Single-Atoms on V3C2O2 MXene Nanosheets for Efficient Methane-to-Methanol Conversion: First-Principles Investigation;ACS Applied Nano Materials;2024-09-02
2. Advances of MXene heterostructure composites in the area of sensing and biomedical applications: An overview;Applied Materials Today;2024-08
3. V4C3 MXene: a Type‐II Nodal Line Semimetal with Potential as High‐Performing Anode Material for Mg‐Ion Battery;ChemSusChem;2023-12-13
4. Encapsulating ZnO/Ni3ZnC0.7 into N-doped carbon nanofibers as anode materials for lithium-ion batteries;Materials Letters;2023-05
5. Nonlinear Absorption and Refraction Properties of V4C3 MXene and its Use for an Ultra‐Broadband Saturable Absorber;Advanced Optical Materials;2023-04-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3