An improved approach for predicting drug–target interaction: proteochemometrics to molecular docking
Author:
Affiliation:
1. Department of Pharmacoinformatics
2. National Institute of Pharmaceutical Education and Research (NIPER)
3. Punjab 160062
4. India
Abstract
Proteochemometric (PCM) methods, which use descriptors of both the interacting species, i.e. drug and the target, are being successfully employed for the prediction of drug–target interactions (DTI).
Funder
Department of Information Technology, Ministry of Communications and Information Technology
Publisher
Royal Society of Chemistry (RSC)
Subject
Molecular Biology,Biotechnology
Link
http://pubs.rsc.org/en/content/articlepdf/2016/MB/C5MB00650C
Reference46 articles.
1. The topology of drug–target interaction networks: implicit dependence on drug properties and target families
2. Target Fishing by Cross-Docking to Explain Polypharmacological Effects
3. TarFisDock: a web server for identifying drug targets with docking approach
4. High-throughput virtual screening of phloroglucinol derivatives against HIV-reverse transcriptase
5. QSAR in the Pharmaceutical Research Setting: QSAR Models for Broad, Large Problems
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A pseudo-label supervised graph fusion attention network for drug–target interaction prediction;Expert Systems with Applications;2025-01
2. A heterogeneous graph neural network with automatic discovery of effective metapaths for drug–target interaction prediction;Future Generation Computer Systems;2024-11
3. Drug–target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism;Bioinformatics;2024-06
4. GCARDTI: Drug–target interaction prediction based on a hybrid mechanism in drug SELFIES;Quantitative Biology;2024-04
5. IMAEN: An interpretable molecular augmentation model for drug–target interaction prediction;Expert Systems with Applications;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3