Unraveling the interfacial compatibility of ultrahigh nickel cathodes and chloride solid electrolyte for stable all-solid-state lithium batteries

Author:

Li Feng1,Wu Ye-Chao23,Cheng Xiao-Bin2,Tan Yihong4,Luo Jin-Da2,Pan Ruijun3,Ma Tao5,Lu Lei-Lei1,Wen Xiaolei6,Liang Zheng4ORCID,Yao Hong-Bin12ORCID

Affiliation:

1. Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China

2. Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

3. Hefei Gotion High-tech Power Energy Co., Ltd., Hefei, Anhui 230012, China

4. Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

5. Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province School of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui 238024, China

6. Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui 230012, China

Abstract

Highly active lattice oxygen released from ultrahigh nickel cathodes degrade chloride solid electrolytes, forming an inert interphase; this phenomenon worsens at higher voltages. Reducing the cut-off voltage markedly enhances ASSLBs’ operational lifespan.

Funder

National Natural Science Foundation of China

Chaohu University

University of Science and Technology of China

Chinese Academy of Sciences

University Natural Science Research Project of Anhui Province

Publisher

Royal Society of Chemistry (RSC)

Reference42 articles.

1. Batteries: Getting solid

2. A solid future for battery development

3. T.Schmaltz , T.Wicke , L.Weymann , P.Voß , C.Neef and A.Thielmann , Fraunhofer , 2022 , https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cct/2022/SSB_Roadmap.pdf

4. Challenges in speeding up solid-state battery development

5. Understanding interface stability in solid-state batteries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3