Spectral deep learning for prediction and prospective validation of functional groups
Author:
Affiliation:
1. Department of Chemistry
2. Purdue University
3. West Lafayette
4. USA
5. Department of Biological Engineering
6. Bhupat and Jyoti Mehta School of Biosciences
7. Indian Institute of Technology Madras
8. Chennai 600036
9. India
Abstract
A new multi-label deep neural network architecture is used to combine Infrared and mass spectra, trained on single compounds to predict functional groups, and experimentally validated on complex mixtures.
Funder
Ralph W. and Grace M. Showalter Research Trust Fund
National Cancer Institute
National Center for Advancing Translational Sciences
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2020/SC/C9SC06240H
Reference57 articles.
1. The growing impact of click chemistry on drug discovery
2. Relative reactivity and selectivity of vinyl sulfones and acrylates towards the thiol–Michael addition reaction and polymerization
3. Influence of Hydroxyl Functional Group on the Structure and Stability of Xanthone: A Computational Approach
4. A PC-SAFT model for hydrocarbons II: General model development
5. Prediction of boiling points of organic compounds by QSPR tools
Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning approach for high-throughput phenolic antioxidant screening in black Rice germplasm collection based on surface FTIR;Food Chemistry;2024-12
2. Machine learning for the advancement of genome-scale metabolic modeling;Biotechnology Advances;2024-09
3. Fcg-Former: Identification of Functional Groups in FTIR Spectra Using Enhanced Transformer-Based Model;Analytical Chemistry;2024-07-15
4. Rapid estimation of soil Mn content by machine learning and soil spectra in large-scale;Ecological Informatics;2024-07
5. Identification of Reaction Network Hypotheses for Complex Feedstocks from Spectroscopic Measurements with Minimal Human Intervention;The Journal of Physical Chemistry A;2024-06-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3