Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids

Author:

Heise Katja1ORCID,Koso Tetyana2ORCID,King Alistair W. T.3ORCID,Nypelö Tiina45ORCID,Penttilä Paavo1ORCID,Tardy Blaise L.678ORCID,Beaumont Marco9ORCID

Affiliation:

1. Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland

2. Materials Chemistry Division, Chemistry Department, University of Helsinki, FI-00560 Helsinki, Finland

3. VTT Technical Research Centre of Finland Ltd., Biomaterial Processing and Products, 02044 Espoo, Finland

4. Chalmers University of Technology, 41296 Gothenburg, Sweden

5. Wallenberg Wood Science Center, Chalmers University of Technology, 41296 Gothenburg, Sweden

6. Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates

7. Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates

8. Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates

9. Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 24, A-3430 Tulln, Austria

Abstract

In this review, we explain the influence and role of the multiscale hierarchy of cellulose fibers in their chemical modifications as exemplified through recent advances in the spatioselective surface chemistry of nanocelluloses.

Funder

Academy of Finland

Austrian Science Fund

Publisher

Royal Society of Chemistry (RSC)

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry

Reference243 articles.

1. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials

2. Climate tipping points — too risky to bet against

3. The European Parliament and the council of the European Union, Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment, 2019

4. An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation

5. Developing fibrillated cellulose as a sustainable technological material

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3