Challenges in nanoelectrochemical and nanomechanical studies of individual anisotropic gold nanoparticles

Author:

Knittel P.1234,Bibikova O.1234,Kranz C.1234

Affiliation:

1. Institute of Analytical and Bioanalytical Chemistry

2. Ulm University

3. 89081 Ulm

4. Germany

Abstract

The characterization of nanoparticles and the correlation of physical properties such as size and shape to their (electro)chemical properties is an emerging field, which may facilitate future optimization and tuning of devices involving nanoparticles. This requires the investigation of individual particles rather than obtaining averaged information on large ensembles. Here, we present atomic force – scanning electrochemical microscopy (AFM-SECM) measurements of soft conductive PDMS substrates modified with gold nanostars (i.e., multibranched Au nanoparticles) in peak force tapping mode, which next to the electrochemical characterization provides information on the adhesion, deformation properties, and Young's modulus of the sample. AFM-SECM probes with integrated nanodisc electrodes (radii < 50 nm) have been used for these measurements. Most studies attempting to map individual nanoparticles have to date been performed at spherical nanoparticles, rather than highly active asymmetric gold nanoparticles. Consequently, this study discusses challenges during the nanocharacterization of individual anisotropic gold nanostars.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3