EFFECTIVE APPROACH FOR FACE RECOGNITION AND ACTIVE SHAPE 3D MODELS USING KERNEL PRINCIPAL COMPONENT ANALYSIS

Author:

Surya Kant Prajapati ,Mrs. C.Navamani

Abstract

Face Recognition is a computer application that is capable of detecting, tracking, identifying or verifying human faces from an image or video captured using a digital camera. Although lot of progress has been made in domain of face detection and recognition for security, identification and surveillance purpose, but still there are issues hindering the progress to reach or surpass human level accuracy. These issues are variations in human facial appearance such as; varying lighting condition, noise in face images, scale, pose etc. Kernel principal component analysis (KPCA) as a powerful nonlinear feature extraction method has proven as a preprocessing step for classification algorithm. A face recognition approach based on KPCA and genetic algorithms (GAs) is proposed. By the use of the polynomial functions as a kernel function in KPCA, the high order relationships can be utilized and the nonlinear principal components can be obtained. After that nonlinear principal components, we use GAs to select the optimal feature set for classification.

Publisher

Mallikarjuna Infosys

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3