USING MACHINE LEARNING AND NLP TECHNIQUES FOR EFFICIENT SPAM EMAIL DETECTION

Author:

K. Suresh Babu ,G.Murali ,Paul John Maddala

Abstract

Email spam has become a prevalent issue in recent times, with the growing number of internet users, spam emails are also on the rise. Many individuals use them for illegal and unethical activities such as phishing and fraud. Spammers send dangerous links through spam emails, which can harm our systems and gain access to personal information. It has become easier for criminals to create fake profiles and email accounts. They often impersonate real individuals in their spam emails, making them difficult to identify. This project aims to identify and detect fraudulent spam messages. The paper will explore the use of machine learning techniques, algorithms, and apply them to data sets. The goal is to select the best methods for maximum precision and accuracy in email spam detection.

Publisher

Mallikarjuna Infosys

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Neural Network Models for Spam E-mail Detection;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3