Hand Gesture Controlled Presentation using OpenCV and MediaPipe

Author:

Sruthi S ,Swetha S

Abstract

In today's digital era, presentations play a crucial role in various domains, ranging from education to business. However, traditional manual presentation methods, reliant on input devices such as keyboards or clickers, have inherent limitations in terms of mobility, interactivity, and user experience. To address these limitations, gesture-controlled presentations have emerged as a promising solution, harnessing the power of computer vision techniques to interpret hand gestures and enable natural interaction with presentation content. This paper presents a comprehensive system for hand gesture-controlled presentations using OpenCV and MediaPipe libraries. OpenCV is employed to capture video input from a webcam, while MediaPipe is utilized for hand tracking and landmark extraction. By analyzing finger positions and movements, the system accurately recognizes predefined gestures. Presenters can seamlessly control the slides, hold a pointer, annotate the content, and engage with the audience in a more interactive manner. The responsiveness and real-time performance contribute to an enhanced presentation experience.

Publisher

Mallikarjuna Infosys

Subject

General Medicine

Reference15 articles.

1. Hajeera Khanum, Dr. Pramod H B, “Smart Presentation Control by Hand Gestures Using Computer Vision and Google’s Mediapipe”, IRJET, Volume: 09 Issue: 07, July 2022.

2. Meera Paulson, Nathasha P R, Silpa Davis, Soumya Varma, “Smart Presentation Using Gesture Recognition”, IJRTI, Volume 2, Issue 3, 2017.

3. Muhammad Idrees, Ashfaq Ahmad, Muhammad Arif Butt, Hafiz Muhammad Danish, “Controlling power point using hand gestures in python”, Webology, Volume 18, 2021.

4. Bhairavi Pustode, Vedant Pawar, Varun Pawar, Tejas Pawar, Samiksha Pokale, “Smart presentation system using hand gestures”, Research square, February 2023.

5. Salonee Powar , Shweta Kadam , Sonali Malage , Priyanka Shingane, “Automated Digital Presentation Control using Hand Gesture Technique”, ICACC, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3