Retinal blood vessels segmentation using CNN algorithm

Author:

K.Narasimha Rao ,Kesani Prudhvidhar Reddy ,Gopavarapu Sai Satya Sreekar ,Gade Gopinath Reddy

Abstract

The precise identification of blood vessels in fundus is crucial for diagnosing fundus diseases. In order to address the issues of inaccurate segmentation and low precision in conventional retinal image analysis for segmentation methods, a new approach was developed.The suggested method merges the U-Net and Dense-Net approaches and aims to enhance vascular feature information. To achieve this, the method employs several techniques such asHistogram equalization with limited contrast enhancement, median filtering, normalization of data, and morphological transformation. Furthermore, to correct artifacts, the method utilizes adaptive gamma correction. Next, randomly selected image blocks are utilized as training data to expand the data and enhance the generalization capability. The Dice loss function was optimized using stochastic gradient descent to improve the accuracy of segmentation, and ultimately, the Dense-U-net model was used for performing the segmentation. The algorithm achieved specificity, accuracy, sensitivity, and AUC of 0.9896, 0.9698, 0.7931, and 0.8946 respectively, indicating significant improvement in vessel segmentation accuracy, particularly in identifying small vessels.

Publisher

Mallikarjuna Infosys

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3