Screening of bacteria in Yarık Sinkhole, Antalya, Turkey for carbonate dissolution, biomineralization and biotechnological potentials

Author:

Arslan- Aydoğdu Elif Özlem,Avci Yağmur,Ahamada Rachid Nahdhoit,Çolak Batu,Doğruöz-Güngör Nihal

Abstract

Abiotic and biotic factors, especially microorganisms, play a role in the development of cave formations and the existence of unique characteristics of each cave. Due to the ecological conditions that characterize the cave environments, highly specialized microorganisms that are the main source of diverse bioactive compounds, inhabit these environments. The aim of this study is to determine the role and biotechnological potential of the bacteria isolated from Yarık Sinkhole located in Antalya (Turkey) by screening their ability to induce the CaCO3 precipitation, to hydrolyze urea, to induce calcite dissolution, and screening their possession of NRPS/PKS gene clusters. The most prevalent phylum is the Bacillota (synonym Firmicutes) (75.7 %), while the dominant species is Bacillus pumilus (33 %). All the isolates showed crystal formation on B4 agar medium, and the Energy dispersive X-Ray spectroscopy (EDS) analyses showed that the crystals are predominately composed of calcium, carbon and oxygen. Ninety-six (96 %) of our isolates have negative ureolytic activity. According to this result and having the ability to induce the CaCO3 precipitation, bac­teria in this environment use other biosynthesis pathways than urea hydrolysis. MgCO3 and CaCO3 were dissolved by 61 % and 59 % of the isolates, respectively. In addition, 5.9 % and 53.7 % of the isolates showed the possession of PKS and NRPS genes, respectively. This result reveals that our isolates have high in­dustrial and biotechnological potential. They may constitute good candidates for further biotechnological applications such as construction of bio-concretes, bioremediation, soil fertility, and production of biologically active secondary metabolites.

Publisher

The Research Center of the Slovenian Academy of Sciences and Arts (ZRC SAZU)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3