Understanding the temporal variation of flow direction in a complex karst system (Planinska Jama, Slovenia)

Author:

Kaufman Georg,Mayaud Cyril,Kogovšek Blaž,Gabrovšek FranciORCID

Abstract

Karst aquifers are abundant, but vulnerable water resources. Therefore, a deeper understanding of possible mechanisms that determine the properties of karst springs is crucial. In this work, we present an example of Unica Spring and Malni Spring, the two main outlets of a large karst system in the Notranjska karst region, Slovenia. Although the two springs share same catchment area, the flow distribution between them shows an interesting behaviour: At low-flow conditions, Malni Spring is the main outlet, while Unica spring receives almost no water. During high water events, discharge of Malni Spring stays limited and Unica Spring becomes the main outlet. We relate these observations to the local geometry of the channels and breakdowns in the remote part of the Planinska Jama (Planina Cave), called Mysterious Lake. There, waters from Rakov Škocjan and Javorniki aquifer merge and further diverge to both springs. At low water conditions, the outflow towards the Unica Spring is restricted by the breakdown, so that most of the inflow is directed towards the Malni Spring. With increasing recharge, the level in Mysterious Lake rises until the water starts to flow over the breakdown along a system of large channels (Rak Branch of Planinska Jama) to the Unica Spring. The breakdown level keeps the hydraulic head and the flow towards Malni Spring limited. To verify this scenario, a hydraulic conduit model was made based on the known and predicted channels, and inflows calculated from the historical data of discharge measurements at related springs and ponors. An inversion procedure was used to obtain a satisfactory fit to the observed discharge data and to constrain the selected model parameters. The model accurately reproduced the observed discharge behaviour under low- andhigh-flow conditions.

Publisher

The Research Center of the Slovenian Academy of Sciences and Arts / Znanstvenoraziskovalni center Slovenske akademije znanosti in umetnosti (ZRC SAZU)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3