The usefulness of unsupervised classification methods for landscape typification: The case of Slovenia

Author:

Perko Drago,Ciglič Rok,Hrvatin Mauro

Abstract

Supervised and unsupervised classification methods can be a useful tool in determining various geographical spatial divisions, especially regionalizations and typifications. Because Slovenia is geographically very diverse, its divisions are a particularly significant and interesting research challenge. The main objective of this article is to determine the effectiveness of unsupervised classification methods, and therefore we compare the well-established landscape typology of Slovenia from 1996 with landscape typologies that were modeled using various unsupervised classification methods. Our results show that landscape typologies modeled using unsupervised classification methods deviate more from the original landscape typology of Slovenia than landscape typologies modeled using random and expert-supervised classification methods.

Publisher

The Research Center of the Slovenian Academy of Sciences and Arts / Znanstvenoraziskovalni center Slovenske akademije znanosti in umetnosti (ZRC SAZU)

Subject

General Earth and Planetary Sciences,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3