Bone Fracture Detection in X-ray Images using Convolutional Neural Network

Author:

Bagaria Rinisha, ,Wadhwani Sulochana,Wadhwani A. K.

Abstract

It is critical to design a fracture detection system to offer quick results and reduce diagnosing errors. Using X-ray images in growing artificial intelligence methodologies, especially the deep learning method, has become a practical choice for detecting bone fractures. This research paper suggests a deep learning method using X-ray images for early diagnosis of bone disorders and also detection of different bone fractures. The effectiveness of the convolutional neural network model for classifying bone fractures from normal bones is used. Several significant factors such as no. of epochs, batch size, type of optimizers and learning rate are considered to find the best-suited model. Hence, it is found that the convolutional neural network model has good performance using the specificity of 89.865%, accuracy of 90% approximately, and area under ROC curve of 0.8088.

Publisher

Soft Computing Research Society

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning based Bone Fracture Detection;2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES);2024-05-03

2. A Systematic Review on Osteoporosis Prediction in Postmenopausal Women;2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST);2024-04-11

3. A Comparative Study of Certain Convolutional Neural Network Architectures for X-ray Image Analysis in Bone Fracture Detection and Identification;2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA);2024-02-01

4. Detection of bone fracture in upper extremities using visual geometric group-19 and compare the accuracy with CNN;AIP Conference Proceedings;2024

5. Unveiling the Spectrum: Versatile Image Processing Techniques in Bone Fracture Detection - A Comprehensive Review;December 2023;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3